115 research outputs found

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres

    Satellites and the climate crisis: what are we orbiting towards?

    Get PDF
    On World Humanitarian Day, Alice Pellegrino, Ria Sen, and Federica Angeletti look at the humanitarian development potential of satellite technology, especially its ability to improve disaster and climate risk management. They discuss specific ways in which satellites can be used to manage disaster and climate risk, together with the current and future evolution of the satellite industry

    Vibration Control of Innovative Lightweight Thermoplastic Composite Material via Smart Actuators for Aerospace Applications

    Get PDF
    Piezoelectric actuators and sensors can be incorporated into aerospace structures to suppress unwanted flexible oscillations. These devices need to interact with various passive structures, including innovative materials such as thermoplastic composites, which offer several advantages over traditional options. This study explores the application of a piezoelectric-based vibration control system on a lightweight carbon-reinforced thermoplastic material. Numerical and experimental investigations are conducted to assess the mechanical properties and damping behavior of the composite. As a case study, an equivalent orthotropic shell laminate is developed to facilitate finite element modeling of two composite solar panel structures equipped to a spacecraft. Moreover, an electro-mechanical formulation is implemented to integrate smart actuators and sensors onto the composite hosting structure. Finally, the efficiency of the active vibration control system is assessed when significant vibration perturbations are caused on the panels by rigid–flexible dynamics coupling during agile attitude maneuvers. The results demonstrate the damping factor of the material can be noticeably improved, making the proposed system a promising technological solution for further aerospace applications. © 2023 by the authors

    Multi-damage detection in composite space structures via deep learning

    Get PDF
    The diagnostics of environmentally induced damages in composite structures plays a critical role for ensuring the operational safety of space platforms. Recently, spacecraft have been equipped with lightweight and very large substructures, such as antennas and solar panels, to meet the performance demands of modern payloads and scientific instruments. Due to their large surface, these components are more susceptible to impacts from orbital debris compared to other satellite locations. However, the detection of debris-induced damages still proves challenging in large structures due to minimal alterations in the spacecraft global dynamics and calls for advanced structural health monitoring solutions. To address this issue, a data-driven methodology using Long Short-Term Memory (LSTM) networks is applied here to the case of damaged solar arrays. Finite element models of the solar panels are used to reproduce damage locations, which are selected based on the most critical risk areas in the structures. The modal parameters of the healthy and damaged arrays are extracted to build the governing equations of the flexible spacecraft. Standard attitude manoeuvres are simulated to generate two datasets, one including local accelerations and the other consisting of piezoelectric voltages, both measured in specific locations of the structure. The LSTM architecture is then trained by associating each sensed time series with the corresponding damage label. The performance of the deep learning approach is assessed, and a comparison is presented between the accuracy of the two distinct sets of sensors: accelerometers and piezoelectric patches. In both cases, the framework proved effective in promptly identifying the location of damaged elements within limited measured time samples

    Benthic habitat map of the southern Adriatic Sea (Mediterranean Sea) from object-based image analysis of multi-source acoustic backscatter data

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Prampolini, M., Angeletti, L., Castellan, G., Grande, V., Le Bas, T., Taviani, M., & Foglini, F. Benthic habitat map of the southern Adriatic Sea (Mediterranean Sea) from object-based image analysis of multi-source acoustic backscatter data. Remote Sensing, 13(15), (2021): 2913, https://doi.org/10.3390/rs13152913.A huge amount of seabed acoustic reflectivity data has been acquired from the east to the west side of the southern Adriatic Sea (Mediterranean Sea) in the last 18 years by CNR-ISMAR. These data have been used for geological, biological and habitat mapping purposes, but a single and consistent interpretation of them has never been carried out. Here, we aimed at coherently interpreting acoustic data images of the seafloor to produce a benthic habitat map of the southern Adriatic Sea showing the spatial distribution of substrates and biological communities within the basin. The methodology here applied consists of a semi-automated classification of acoustic reflectivity, bathymetry and bathymetric derivatives images through object-based image analysis (OBIA) performed by using the ArcGIS tool RSOBIA (Remote Sensing OBIA). This unsupervised image segmentation was carried out on each cruise dataset separately, then classified and validated through comparison with bottom samples, images, and prior knowledge of the study areas.This research was funded by EUROSTRATAFORM (EC contract no. EVK3-CT-2002-00079), EU-FP-VI HERMES (GOCE-CT-2005-511234-1), EU-FP-VII HERMIONE (contract no. 226354) and COCONET (Grant agreement no: 287844); Convenzione MATTM-CNR per i Programmi di Monitoraggio per la Direttiva sulla Strategia Marina (MSFD, Art. 11, Dir. 2008/56/CE); Italian Flag Project Ritmare (Ricerca Italiana per il Mare); MAGIC (Accordo di Programma Quadro Consiglio Nazionale delle Ricerche—CNR, Dipartimento della protezione civile della Presidenza del Consiglio dei Ministri); MIUR-PRIN 2009 “Carbonate conduits linked to hydrocarbons enriched seepages” and MIUR-PRIN 2017 GLIDE 2017FREXZY. This paper contributes to H2020 Projects EVER-EST (Grant agreement no: 674907) and RELIANCE (Grant agreement no: 101017501). This is ISMAR-CNR contribution number 1975

    Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells

    Get PDF
    Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies

    Linking coastal and seafloor morphological features along the eastern side of the Maltese archipelago

    Get PDF
    The integration of detailed geomorphological information from the present subaerial exposures of the Maltese archipelago, with morphobathymetric data obtained from the adjacent continental margin may serve in understanding processes active in shaping the archipelago since the Last Glacial Maximum. In perspective, this appears also to be of fundamental importance to better define the kinematics of active gravitational processes occurring along the coastlines. Preliminary results reveal the existence of submerged morphologies comparable to subaerial analogous. A case in point is circular depressions at shallow depth interpreted as inundated former karst features like sinkholes on-land. This is probably the case also of fractured plateaus surrounded by detached blocks identified offshore, which are comparable to terrestrial landforms formed by lateral spreading. Other relevant features identified on the continental margin and easily correlatable with morphologies on land include meandering river valleys.peer-reviewe

    Improving assessment and management of large non-pedunculated colorectal lesions in a Western center over 10 years. lessons learned and clinical impact

    Get PDF
    Background and study aims Outcomes of endoscopic assessment and management of large colorectal (CR) non-pedunculated lesions (LNPLs) are still under evaluation, especially in Western settings. We analyzed the clinical impact of changes in LNPL management over the last decade in a European center.Patients and methods All consecutive LNPLs >= 20mm endoscopically assessed (2008-2019) were retrospectively included. Lesion, patient, and resection characteristics were compared among clinically relevant subgroups. Multivariate logistic regression (for predictors of submucosal invasion [SMI] and recurrence), Kaplan-Meier curves and ROC curves (for temporal cut-offs in trends analyses) were used.Results A total of 395 LNPLs were included (30mm [range 20-40]; SMI=9.6%; primary endoscopic resection [ER]=88.4%). Pseudo-depression and JNET classification independently predicted SMI beyond single morphologies/location. After complete ER, involvement of ileocecal valve/dentate line, piece-meal resection and high-grade dysplasia independently predicted recurrence. Rates of 5-year recurrence-free, surgery-free and cancer-free survival were 77.5%, 98.6% and 100%, respectively, with 93.8% recurrences endoscopically managed and no death attributable to ER or CR cancer (versus 3.4% primary surgery mortality). ROC curves identified the period >= 2015 (following Endoscopic Submucosal Dissection [ESD] introduction and education on pre-resective lesion assessment) as associated with improved lesions' characterization, increased en-bloc resection of SMI lesions (87.5% vs 37.5%; p=0.0455), reduced primary surgery (7.5% vs 16.7%; p=0.0072), surgical referral of benign lesions (5.1% vs 14.8%; p=0.0019), and recurrences.Conclusions ESD introduction and educational interventions allowed ER of more complex lesions, offset by increased complementary surgery for complications or intrinsic histological risk. Nevertheless, overall, they have reduced surgery demand and increased appropriateness and safety of LNPL management in our center

    Images from a drowned prehistoric landscape : the eastern side of the maltese archipelago

    Get PDF
    Offshore research carried out to map the seafloor on the north-eastern Maltese margin resulted in the first acquisition of multibeam bathymetric data imaging with detail the seascape. The surveys were conducted during cruises MEDCOR and DECORS in December 2009 and August 2011 respectively onboard R/V Urania. These missions mapped the north-eastern Maltese continental margin from off north Gozo to the southern tip of Malta. These data have been integrated by further high-resolution multibeam records acquired during cruise RICS 2010 onboard R/V Hercules on the shallow eastern margin between southern Gozo and north Malta.peer-reviewe

    Identifying priorities for the protection of deep Mediterranean Sea ecosystems through an integrated approach

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fanelli, E., Bianchelli, S., Foglini, F., Canals, M., Castellan, G., Guell-Bujons, Q., Galil, B., Goren, M., Evans, J., Fabri, M.-C., Vaz, S., Ciuffardi, T., Schembri, P. J., Angeletti, L., Taviani, M., & Danovaro, R. Identifying priorities for the protection of deep Mediterranean Sea ecosystems through an integrated approach. Frontiers in Marine Science, 8, (2021): 698890, https://doi.org/10.3389/fmars.2021.698890.Benthic habitats of the deep Mediterranean Sea and the biodiversity they host are increasingly jeopardized by increasing human pressures, both direct and indirect, which encompass fisheries, chemical and acoustic pollution, littering, oil and gas exploration and production and marine infrastructures (i.e., cable and pipeline laying), and bioprospecting. To this, is added the pervasive and growing effects of human-induced perturbations of the climate system. International frameworks provide foundations for the protection of deep-sea ecosystems, but the lack of standardized criteria for the identification of areas deserving protection, insufficient legislative instruments and poor implementation hinder an efficient set up in practical terms. Here, we discuss the international legal frameworks and management measures in relation to the status of habitats and key species in the deep Mediterranean Basin. By comparing the results of a multi-criteria decision analysis (MCDA) and of expert evaluation (EE), we identify priority deep-sea areas for conservation and select five criteria for the designation of future protected areas in the deep Mediterranean Sea. Our results indicate that areas (1) with high ecological relevance (e.g., hosting endemic and locally endangered species and rare habitats),(2) ensuring shelf-slope connectivity (e.g., submarine canyons), and (3) subject to current and foreseeable intense anthropogenic impacts, should be prioritized for conservation. The results presented here provide an ecosystem-based conservation strategy for designating priority areas for protection in the deep Mediterranean Sea.This study was supported by the DG ENV project IDEM (Implementation of the MSFD to the Deep Mediterranean Sea; contract EU No. 11.0661/2017/750680/SUB/EN V.C2). MC and QG-B acknowledge support from Generalitat de Catalunya autonomous government through its funding scheme to excellence research groups (Grant 2017 SGR 315)
    • …
    corecore